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ABSTRACT. In this paper, the generalized residual power series technique (RPSM)  is employed to obtain analytic-
numeric solution for the famous hyperbolic couple of conservation laws, known by the variable-depth shallow water 
equations. The recently developed Algorithm is based on combining the Taylor series solutions and the well-defined 
residual functions. Convergence and error estimations for considered truncated series solutions are discussed briefly. 
Without need for unrealistic assumptions, the method is successfully applied for constructing approximate solutions of high 
accuracy for considered problem. The obtained solutions and corresponding absolute errors are calculated and shown 
graphically with the aid of Mathematica software package. The RPSM is simple, applicable, and reduces the size of 
computations. 
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1. INTRODUCTION  
The notion of conservation laws is fundamental to 

understand many physical world phenomena arise in fluid 
mechanics, solid state physics, plasma physics, plasma 
waves and chemical physics. Also, conservation laws are 
fundamental laws in other fields of science such as 
engineering, biology, chemistry and geology. While most 
of such problems are modeled by differential equations, the 
development of constructing exact, semi-analytic, and 
numerical solutions of differential equations plays a vital 
role to allow physicists drawing conclusions in an efficient 
way.  

The (1+1)-dimensional hyperbolic system of conservation 
laws, known by the shallow water equations, and governed 
by the couple of partial differential equations [1-2] 

     20, 0.5t tx x
u uv v u v H x     . (1) 

models the flow of water in an infinitely wide rectangular 
cross-section, frictionless and smoothly varying bottom 

surface channel. In Eq.(1),  ,u x t  denotes the total 

height above the bottom of the channel,  ,v x t  represents 

the fluid velocity, and the analytic function  H x  is the 

depth of a point from a fixed reference level of the water. 

The two independent variables x  and t  are the distance 

along the direction of flow and the time, respectively. 
When the bottom is not flat, no exact analytical solution 

for the shallow water equations Eq.(1) could be found [2]. 
Authors in [3] proved the convergence of a weak solution 
for non-strictly hyperbolic system using the theory of 
compensated compactness. In order to construct 
approximate solutions of hyperbolic and hyperbolic-elliptic 
systems of conservation laws, several numeric-analytic 
schemes were applied. Among these attempts, we list the 
finite difference method [4], the finite element method [5], 
the Adomian decomposition method and its variants [6-11], 
the variational iteration method [12-13], differential and 
reduced differential transform method [14-18], the simple 
equation method [19], the perturbation iteration algorithm 
and sine-Gordon expansion method [20]. 

The motivation of the current work is to handle the 
shallow water system Eq.(1) by applying the residual power 
series method (shortly RPSM). To treat fuzzy differential 
equations, The RPSM was first employed by Abu Arqub 
[21]. Later, many authors have been applied this scheme for 
processing differential, integral, and integro-differential 
equations and systems of integer and fractional orders. For 
example, the generalized Burger-Huxley equation [22], 

isentropic flow of an inviscid gas model [23], higher 
dimensional telegraph equation [24], van der Waals p-
system [25], nonlinear diffusion equation [26], one-
dimensional shock wave equation [27] and fractional 
Zakharov-Kuznetsov equation [28]. See also the references 
therein. 

2. MATERIAL AND METHODS 
In this section, the procedure of residual power series 

scheme is described. For this purpose, consider the (1+1)-
dimensional system of conservation laws in general form 

       0 0; , , , ,t x x t x t x t x   U F U f U U . (2) 

Where  ,u vU ,  ,F GF  and  ,f gf  is the 

inhomogeneous vector-valued term which is assumed to be 

analytic on some domain containing  
0t . 

As in the Taylor series method, the solution in the RPSM 
case is assumed to be in a form of power series as follows 

      0 0

1

,
k

k

k

x t x x t t




  U U ξ , (3) 

where       1 2,k x x x ξ  is the sequence of function 

coefficients to be determined. 

For natural m , the thm -order approximate solution, 

which satisfies initial data, is defined by the thm -Taylor 
polynomial 

      0 0

1

,


  
m

k

m k

k

x t x x t tU U ξ . (4) 

One can easily obtain that the approximate solution 
satisfies the initial conditions. Consequently, starting with 

1m  in Eq.(4), of  1 2, UUU , the first approximation 

will be 

      1 0 1 0,x t x x t t  U U ξ , 

subject to:  

 
0

1lim , 0
t t

x t


Res , 

where, 

    1 1 1, t xx t D D Res U F U . (5) 

is the well-defined analytic residual function. In the same 

manner, for 2,3,m  , the undetermined coefficients 

 m xξ  can be obtained consecutively by solving the 

algebraic equation 

   
0 0

1lim , lim m m

m t m t x m
t t t t

x t D D D

 
    Res U F U 0  (6) 

Consecutively, the undetermined coefficients of power 
series solution in Eq.(3) can be obtained as follows: 

mailto:eaaz2006@yahoo.com


394 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),31(3),393-396,2019 

May-June 

   
0

11

!

k

k t x k t t
x D D

k






   ξ F U  (7) 

Convergence and error estimation for approximating the 
solution of the initial-value problem in Eq.(1) for the 
modified version of the RPSM have been studied and 
proved [22-26]. Main theorems are listed in what follow. 

Theorem 2.1. The residual function  ,m x tRes  vanishes 

as m  approaches the infinity. 
Corollary 2.2. The truncated series solution given in 

Eq.(4) and obtained by the RPSM is the thm - order Taylor 

expansion of   ,x tU  about 
0t t . 

As a result of these facts, the approximate series solution 
will be more and more close to the exact solution, in its 

Taylor series form, while m  increases. Therefore, the 

Taylor's theorem tells that 
 

     0 0 ,m

1

, ,
m

k

k

k

x t t t x t


    UU U ξ R , 

where, 
 

 
 

  
11

,m 0

1
, ,

1 !

mmx t x t
m

  
  


U

R U , 

is the reminder term with 
0 0t t t R    , for some real 

number 0R  . Assume that 

     1 1, m mx t C D C D  U  is bounded. That is, 

positive constants 
1C , 

2C  exist with 1

1 1

m

t U C  , and 

1

2 2

m

t U C   on the indicated domain. For 
1 2C C C  , 

an error bound for using the thm - order truncated series 
solution is estimated to be 

 

   
 

1

, ,
1 !

m

m

R C
x t x t

m



 


U U . (8) 

To reduce the error bound while being something large for 

1R  , i.e. to expand the domain of convergence, or to 
control this error within required tolerance, a multistep 
residual power series technique can be constructed and 
employed as in the case of Adomian-Rach decomposition 
method [29]. Respectively, the absolute and relative errors 

are defined normally, at each point  ,x t D , with known 

exact analytical solution as follows 

      , , ,m

abs mx t x t x t E U U U . (9) 

and, 

  
   

 

, ,
,

,

mm

rel

x t x t
x t

x t




U U
E U

U
. (10) 

With unknown exact analytical solution, two formulas of 
absolute errors are defined by 

      1, , ,m

abs m mx t x t x t E U U U . (11) 

or, by direct substitution into Eq.(3), 

    ,m

abs t m x mx t D D  E U U F U f . (12) 

In this case, the relative error is defined by 

  
   

 
1

1

, ,
,

,

m mm

rel

m

x t x t
x t

x t








U U
E U

U
. (13) 

In other words, for the case of unknown exact solution, 

the approximate power solution of order m  Eq.(4) is 

convergent to the exact solution  ,x tU  if the sequence of 

nonnegative numbers  m , where  

 

 
1 ,

,

m

m

m

x t

x t





U

U
, (14) 

converges to 1  as m increases unboundedly.  
m

 

denotes 

the thm  rate of convergence. As 1m  , with sufficient 

small number of iterations m , faster convergence will be 

obtained. 

 

3. RESULTS 
Following the presented procedure discussed in Section 2, 

the truncated approximate height and velocity of water flow 
of order m are assumed to be 

  

      

      

0 0

1

0 0

1

,

,

m
k

m k

k

m
k

m k

k

u x t u x x t t

v x t v x x t t









  

  




. (15) 

Sequentially, the pairs of unknown coefficients 

    ,k kx x  , 1,2, ,k m , could be determined by 

solving the corresponding coupled algebraic equations 

 

   

1

2

0
! 0.5 '

k
t k x k k

t

t k x k k
t

u u v

k v u v H x





   
  
      

0

 

(16
) 

 

 

 
Fig. 1 The 3D behavior of approximate (a) height  5 ,u x t   

and (b) velocity  5 ,v x t of water on  40, 1D x t   . 
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The first few coefficients are listed below. Determining 

more coefficients, which implies more accuracy, is possible 
with aid of Mathematica software package. 

  0 01 0 0v u u vx   
 

 
  01 0 0vx H u v  
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Fig. 2 Corresponding absolute errors for approximate (a)  

height  5 ,u x t  and (b) velocity  5 ,v x t of water in Fig. 1 

 on D . 

 
Numerically, the system of shallow water equations 

Eq.(1) subject to initial data  [6-8] 

 
2

2

1

x

x

e
H x

e







, (17) 

where  

     

 

,0 0.25

,0 0

u x H x Sech x

v x

 


, 0 1  . (17) 

is considered. The 5
th

-order approximate solutions are 
obtained and shown in Figure 1. With undetermined 
closed-form exact solutions, and for accuracy test purposes, 
the corresponding absolute errors given in Eq.(12) are 
exhibited in Figure 3. Comparing to other used methods, 
like the Adomian decomposition method [6], the variational 
iteration method [12], and the reduced differential 
transform method [15], our approach is more accurate. The 
highly accurate solutions make the obtained approximate 
solutions an acceptable as a criterion of comparison in next 
works. The convergence rates in Eq.(14) are listed for 
computed truncated series solutions to be 

0 1.16673  , 

1 1.00257  , 

2 1.00154  , 

3 1.00072  , 

4 1.00057  ,  

Figure 3 shows the numerical behavior of water flow in 

the u v  plane with step-size 0.01h  . 

 

 

Fig. 3 Numerical plot of approximate solutions in the u v  

plane for 10x   and 1t  . 
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4. DISCUSSION AND CONCLUSION 
The recently presented semi-analytic residual power series 

method is successfully applied to the (1+1)-dimensional 
system of variable-depth shallow water equations. This 
system is well-known example of hyperbolic conservation 
laws. Our approach provides a solution in a form of 
Taylor’s series expansion with coefficients determined 
consecutively in the mean of residual function. The method 
is applicable for nonlinear ordinary and partial differential 
equations as shown in Material and Methods Section. 
Efficiency and effectiveness of the residual power series 
scheme in processing the variable-depth shallow water 
equations are obtained in Results part of this paper. High 
accurate semi-analytic solutions, with easily computable 
components, are derive and shown graphically. Absolute 
errors are computed and plotted on the whole domain. 
Numerical representation for the flow of water is also 
shown. In comparison to other existing methods, the 
presented Algorithm is simple and reliable which can be 
expanded to tackle a wide range of nonlinear evolution 
equations arise in physics and engineering. 
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